

 Editor: Matthew T. Mullarkey

Volume 2 Number 11 1 DEC 2017

GRANDON GILL, BERNARDO RODRIGUES

EMPLOYING DYNAMIC LOGIC IN CYBERSECURITY1
The dynamic logic algorithm has already demonstrated its ability to identify malware in network
traffic. What other opportunities does the emerging cybersecurity space offer for applications?

Dr. Leonid Perlovsky, distinguished physicist and cognitive scientist, pondered this question, which could
have a significant impact on his research direction in the years to come. Over the past few decades, he had
developed and refined algorithms for distinguishing objects in images, an approach that had found its way
into various classified U.S. Department of Defense (DoD) applications. Now he was looking for new
potential opportunities to see his research applied, allowing it to evolve further.

One of the most interesting aspects of Perlovsky’s approach was that it was very similar to that taken by
the human brain in processing sensory information. It began with a very vague model of what might or
might not be present in the data being examined. Through successive iterations, analogous to the layers of
processing used in human sensory systems, the patterns in the data corresponding to objects would grow
more and more distinct until, finally, they became recognizable. Unlike most statistical techniques, this
approach—termed “dynamic logic” by Perlovsky—did not require that a model be specified in advance.
As such, it was well suited for contexts that required discovery.

One application of dynamic logic that particularly impressed him involved the detection of malware in
network packet data. Using an externally provided database of this traffic, his algorithm had successfully
identified the presence of malware with almost eerie precision, and with substantially less processing than
competing techniques. This suggested that dynamic logic could well become a powerful tool in the
arsenal of IT professionals seeking to protect their systems from hackers. What other possible
cybersecurity-related opportunities might be well suited to this tool?

Identifying potential opportunities represented only part of the challenge of putting dynamic logic to
work. After letting the project lay dormant for several years, he had recently been approached by an
energetic Brazilian master’s student who had identified ways that DL (dynamic logic) could be used. The
student had also established a DL open source project on his own initiative. If that project were to move
forward, Perlovsky would need to provide some encouragement and guidance. But he had his own set of
questions. Was the open source path the right way to proceed? What potential application should be
given highest priority? Should government or commercial funding be pursued? And the big question…
Perlovsky readily acknowledged that he was no cybersecurity expert. Given that he was already actively
pursuing grants from the DoD and National Institute of Health (NIH), would it really make sense to split
his attention further, and look towards tackling an entirely new class of problems?

1 Copyright © 2017, Grandon Gill and Bernardo Rodrigues. This case was prepared for the purpose of class discussion,
and not to illustrate the effective or ineffective handling of an administrative situation. This case is published under a
Creative Commons BY-NC license. Permission is granted to copy and distribute this case for non-commercial
purposes, in both printed and electronic formats.

 GILL & RODRIGUES

2 Volume 2, Number 11, 2017

Leonid Perlovsky
Dr. Leonid Perlovsky was born in Odessa, a resort and port city on the Black Sea, USSR, which later
became part of the Ukraine when the Soviet Union broke up. He graduated from Novosibirsk University,
where he served as a Professor of Physics. In 1978, he emigrated to the U.S., where he embarked on a
stellar and varied academic career that crossed numerous disciplinary lines.

A particular area of study that proved to be of greatest interest to Perlovsky involved the application of
cognitive principles to the analysis of problems that were too hard to attack using conventional
algorithms. In the course of this research, he created a new area of cognitive mathematical engineering,
dynamic logic (discussed in the next section), which modeled the mind’s processes, and applied them to a
number of problems in engineering and cognitive science that had, for decades, been unsolvable.

As a consequence of the breadth of his interests, Perlovsky’s research career had followed a trajectory far
different from that of the traditional academic—who might remain at a single institution for decades, or
even an entire career. Among his past affiliations were the following:

• Professor at Novosibirsk University and New York University

• Visiting Scholar at Harvard School of Engineering and Applied Sciences

• Researcher at Harvard Medical School’s Athinoula Martinos Brain Imaging Center

• Chief Scientist at Nichols Research, a $500mm high-tech DOD contractor

• Technical Advisor and Principal Research Scientist at the AF Research Lab

• Principal in several commercial startups involved in developing tools for text understanding,
biotechnology, and financial predictions

At the time of the case, he was a visiting scholar at Northeastern University, where he was working with
faculty to develop grant proposals for future research projects.

Perlovsky’s research career had been extraordinarily productive, and was marked by a large number of
accomplishments. He had been invited as a keynote plenary speaker and tutorial lecturer across the globe,
including most prestigious venues such as the Nobel Forum at Karolinska Institutet. His publications
included more than 500 papers, 17 book chapters, and 4 books with Oxford and Springer, both well-
known academic publishers. He has also been awarded 2 U.S. patents.

Perlovsky was particularly proud of his work in integrating two of his research passions, physics and
cognition. He was the founder and continued to serve as Editor-in-Chief for Physics of Life Reviews.
Established in 2004, the journal had achieved an impact factor (IF)—a measure of how often articles in
the journal are typically cited by other researchers shortly after they are published—of 9.5. (By way of
comparison, this was higher than any academic journal in business, which rarely achieved IF levels higher
than 6).

Much of Perlovsky’s recent research focused on areas far outside of the usual domain of a physicist. He
led research projects on mathematical models of the mind, emotionality of languages and cultures,
cognitive functions of emotions in language and music, and models of cultures. A number of predictions
of these models have been experimentally confirmed. And all were driven by the hierarchy of abstract
models that was at the core of dynamic logic.

 MUMA CASE REVIEW

 3

Dynamic Logic
For at least has long as there have been philosophers, individuals have been intrigued by how the mind
works. For example, the early Greek philosophers developed perspectives that still hold considerable
validity today. Perlovsky explained (Perlovsky & Ilin, 2010, p. 4):

The relationships between logic, cognition, and language have been a source of longstanding
controversy. The widely accepted story is that Aristotle founded logic as a fundamental mind
mechanism, and only during the recent decades science overcame this influence. I would like to
emphasize the opposite side of this story. Aristotle assumed a close relationship between logic
and language. He emphasized that logical statements should not be formulated too strictly and
language inherently contains the necessary degree of precision. According to Aristotle, logic
serves to communicate already made decisions... The mechanism of the mind relating language,
cognition, and the world Aristotle described as forms. Today we call similar mechanisms mental
representations, or concepts, or simulators in the mind. Aristotelian forms are similar to Plato’s
ideas with a marked distinction, forms are dynamic: their initial states, before learning, are
different from their final states of concepts... Aristotle emphasized that initial states of forms,
forms-as-potentialities, are not logical (i.e., vague), but their final forms, forms-as-actualities,
attained in the result of learning, are logical. This fundamental idea was lost during millennia of
philosophical arguments.

Dynamic Logic Approach
This notion of “vague to crisp” was central to dynamic logic (DL). In traditional logic-based approaches
to object identification in the presence of noise, you typically began with a set of specific alternative
models (only one of which could be “true”) that must be mapped to a signal containing a large number of
points, any of which could potentially contain an object. To find a best fit, you needed to consider all
possible combinations of object configurations (e.g., size, shape, position, orientation) and map these to
each of the possible models (e.g., 1 object models, 2 object models, 3 object models, etc.) in order to
determine which model was the best fit. This produces what was called a combinatorial explosion or
computational complexity (CC) that exceeded the potential of any known computer system. It was
sometimes referred to as a bottom up (BU) process, since it started with very specific lower level data
(e.g., the signal) and matched it to very specific models. Top down (TD) processes, in contrast, started
with an assumed model and then matched it to the assumed data. These were much simpler, but were
severely limited by the quality of the initial assumption—since an initial model that did not match the
underlying reality would produce a poor result no matter how much mathematical optimization was
performed.

The human mind, in contrast to logical approaches, has developed techniques for effectively leveraging
both BU and TD approaches in processing signals, such as visual input from the retina. The trick, the
same one employed in DL, was to begin with very vague (sketchy) models and process them in parallel,
performing processing that caused good fits to become successively more crisp over time. Perlovsky gave
the following example (2016c, p. 290-291):

Everyone can conduct a simple 1/2 minute experiment to glimpse into neural mechanisms of
representations and BU–TD signal interactions. Look at an object in front of your eyes. Then
close your eyes and imagine this object. The imagined object is not as clear and crisp as the same
object with opened eyes. It is known that visual imaginations are produced by TD signals,

 GILL & RODRIGUES

4 Volume 2, Number 11, 2017

projecting representations to the visual cortex. Vagueness of the imagined object testifies to the
vagueness of its representation. Thus the fundamental DL prediction is experimentally confirmed:
representations are vague.

When you open your eyes, the object perception becomes crisp in all its details. This seems to
occur momentarily, but this is an illusion of consciousness. Actually the process “from vague to
crisp” takes quite long by neuronal measures, 0.6s, hundreds to thousands of neuronal
interactions. But our consciousness works in such a way that we are sure, there is no “vague to
crisp” process. We are not conscious of this process, and usually we are not conscious about
vague initial states either. This prediction of DL has been confirmed in brain imaging
experiments. These authors demonstrated that indeed initial representations are vague and usually
unconscious. Also the vague to crisp process is not accessible to consciousness. Indeed
Aristotle’s formulation of cognition as a process from vague potentialities to logical actualities
was ahead of his time.

In the DL approach, vague alternative representations (models) were mapped against a source input signal
and similarity scores were computed over time. Each model then effectively competed with other
alternative models for the highest similarity score, a dynamic process that naturally placed the greatest
weight on those models that exhibited the highest similarity. As the process converges, the highest
similarity models made the greatest contribution to an overall score. The process eventually converges
when the overall score could not be further increased, at which point (ideally) a single best-fitting model
could be identified.

Although the mathematics of the DL algorithm were beyond the scope of the case, its ability to recognize
complex patterns in the presence of noise was prodigious. Exhibit 1 shows the results of a simulation
where an image that consisted of three crescents (image a) was obscured by random noise to the point
where it was completely invisible to the human eye (image b). In its initial passes (images c & d), a single
blob model was the best fit. As the model attempts to converge, however, a three blob model becomes a
better fit (images e & f). Further convergence finds crescents to be a better fit (image g) and by the time
the process ceases to converge further (image h) it has recreated the initial pattern almost perfectly.

What was particularly significant about this illustration was the obvious fact that the algorithm performed
even better than the human visual systems—which was an extraordinary information processor in its own
right. The obvious implication was that DL could potentially be used to detect patterns that would stymie
even human analysts.

Dynamic Logic and Similar Object Identification
The potential application of DL extended far beyond object detection in images. Another type of problem
to which it could be applied was the identification of related objects in a large pool of objects that did not
exhibit any particular pattern. This type of problem frequently occurred in big data settings where the
objective was to extract useful patterns out of a sea of data that was too large to study using traditional
database search techniques. Of particular interest here was starting with TD models that were sufficiently
vague that when they became crisp they provided insights into relationships that were previously
unknown to the researcher.

Exhibit 2 provides an example of this process in action. On the left-hand side, 16,000 observations made
in sequence were displayed in temporal sequence (horizontal axis). Each observation could contain any
combination of 1000 possible objects (vertical axis). The challenge was to identify relationships between
objects. A variation of the DL algorithm was used to sort the observations with the objective of
maximizing the similarity of adjacent observations. Displayed in this way, adjacent observations

 MUMA CASE REVIEW

 5

containing the same object started to form a line. Where parallel lines appeared in the same set of adjacent
observations, a relationship between two or more objects has been detected. This was shown on the right-
hand figure.

Application of Dynamic Logic
Perlovsky’s algorithms have been adapted for use in a number of classified defense systems, primarily for
the purpose of image identification and tracking. As a result, he has received the John McLucas Award,
the highest US Air Force Award for basic research. It had also produced tactical and strategic
breakthroughs endorsed by General Officers, by DepSecDef Hon John Young, and by SecDef Hon Ash
Carter. But Perlovsky felt that DL had potential applications that were far beyond tracking systems. For
example, his company has predicted the 9/11 market crash a week before the event and supported the
subsequent SEC investigation. He was, however, always looking for novel settings in which the DL
approach might prove effective.

Broadly speaking, the DL algorithm appeared to be most applicable in settings where the goal was to:

• Identify the presence of an unknown number of vaguely described objects in data sets containing
a substantial amount of noise

• Identify previously unsuspected relationships between objects in datasets containing many
observations that did not involve the relationship

In both these cases, the goal was to substantially exceed the human’s ability to detect the same objects or
patterns. DL might also be applied to detect the absence of objects or patterns.

Dynamic Logic and Malware Detection
Several years previously, Perlovsky encountered a specific problem where it appeared that DL might have
a practical application. The specific task involved the detection of the presence of malware in network
traffic. In a conference paper, Perlovsky and his co-author, described the problem as follows (Perlovsky
& Shevchenko, 2014, p. 4056):

The approach to detecting novel attacks is anomaly detection: we develop algorithms learning
models of attack-free traffic, and then detect deviations identifying malware. Gradual learning is
a fundamental aspect of this approach. We begin assuming that an adequate protection system
exists, and we can learn characteristics-models of attack-free traffic. The developed algorithms
learn evolution of the malware as it attempts to hide its harmful nature. For the success of this
approach, learning of the defensive system must be faster than evolution of the threat.

The defensive system learns to recognize threats as combinations of basic elements, words or n-
grams. In principle, this is a most general and universal approach, potentially capable of
recognizing any threat. The difficulty of realizing this universal potential is computational
complexity and slow learning of most existing algorithms. The reason for these difficulties is
fundamental: the number of combinations is very large, even relatively few n-grams can be used
to form a very large number of combinations. The number of combinations of only 100 n-grams
is 100100, this number exceeds all interactions of all elementary particles in the universe during its
entire lifetime. Therefore, even if the entire universe could be made to learn combinations of n-
grams, it will not be able to perform its job fast enough.

 GILL & RODRIGUES

6 Volume 2, Number 11, 2017

Perlovsky tested DL on this problem using a publically available database of 119,610 observations
characterizing internet protocol (IP) packet data that included both attack free packets and packets
generated by different types of malware. The descriptions for each observation consisted of 41 different
attributes, each of which might or might not be present in a particular pattern. The goal was to distinguish
malware-generated packets from normal traffic and, ideally, to classify different sources of malware.

The results of the test, shown in Exhibit 3, were quite remarkable. Prior to its application, the packet
attribute display (not shown) looked much like the left hand side of the earlier Exhibit 2, which is to say
random to the human observer. After being sorted based upon the DL assessment of attribute similarity
across observations, the malware packets could be readily identified visually. Examined from left to right,
a series of lines first mark normal message traffic (67343 observations, more than half the image).
Following that, a series of much shorter sets of common parallel lines that indicated (from left to right)
the presence of:

• Portsweep malware (2931 observations)

• Warezclient malware (890 observations)

• Satan malware (3633 observations)

• Neptune malware (41214 observations)

• Ipsweep malware (3599 observations, at the far right of the image)

Naturally, as far as DL was concerned, these were just similar patterns—internally, it had no concept of
what constituted “malware”. It simply observed similarities between the attributes of the message traffic
generated from a particular source, which happened to be malware. What was significant about this
achievement, however, was the following:

A. It was more effective at separating out malware than any other algorithm that had been tried on
the particular data set.

B. The algorithm operated very quickly, meaning it could be applied on a basis that was very close
to real time. This was significant because malware developers were known to modify their code
immediately once a technique for detecting its presence was identified by security personnel.

C. Once a baseline for normal traffic was established, the algorithm could be used to monitor traffic
and, Perlovsky conjectured, it could identify anomalies that might be the result of new malware
sources relatively quickly.

The success of applying DL to the network traffic test data set showed great promise. But it also left
Perlovsky with two important unanswered questions:

1. What steps could he take to move the application of DL to malware detection into practice?

2. Given the rapidly growing recognition of the menace posed by cyber threats to the U.S economy
and national defense, were there other potential applications of DL to cybersecurity?

Potential for Cybersecurity Applications
Perlovsky did not feel that he had any particular expertise in cybersecurity; most of his past research, both
theoretical and as applied in classified systems, had focused on identifying objects in the presence of high

 MUMA CASE REVIEW

 7

levels of noise. For this type of task, dynamic logic had proven to be both highly effective and highly
efficient in terms of the time and resources required. Particularly in light of the malware test data set
where dynamic logic had performed well beyond expectations, it seemed as if cyber threat detection and
classification were good potential uses for the algorithm.

Prominent Cyber Threats
Cybersecurity threats could be experienced from many sources. Norton-Symantec, a world leader in anti-
virus and firewall software, classified 11 of these as being particularly serious. These were as follows:

1. Virus: Software that was installed without the user’s knowledge that attached to other programs
and could also self-replicate—often “mutating” in the process, so that its signature could change.
Viruses could both damage a user’s systems directly and, even if it ddi not, could consume
system resources.

2. Spam/Spim/Spit: Unsolicited communications of three different types: Junk mail (spam), junk
messages (spim), and junk internet phone calls over systems such as Skype (spit). All three forms
could consume system resources and the user’s time.

3. Spoofing, Phishing, and Pharming: Techniques where an intruder masqueraded as a valid user,
contact, or potential contact in order to get the target to take an action that would be potentially
damaging. This could involve misrepresenting a source address (spoofing), sending a false, but
tempting email message (phishing), or redirecting traffic to an unintended website (pharming).

4. Spyware: Software, normally installed through a virus or other vector (such as a phishing
attachment) that surreptitiously stole information—such as IP or identity information—from a
user’s system.

5. Keystroke Logging (Keylogging): Software, normally installed through a virus or other vector
(such as a phishing attachment) that surreptitiously reported a user’s keystrokes, a process
through which critical information—most frequently logins and passwords—could be acquired.

6. Adware: Software, normally installed through a virus or other vector (including the intentional
installation of freeware or shareware) that popped up advertisements on the user’s system,
consuming both system resources and the user’s time.

7. Botnet: A collection of computers with surreptitiously installed software that could be repurposed
to perform various nefarious activities—such as the delivery of spam or a DOS attack—without
the knowledge of the owners of the system.

8. Worm: Similar to viruses in impact, these were standalone programs that could self-replicate
over a network.

9. Trojan Horse: An application or file that masqueraded as achieving a desired end while, at the
same time, actually performing some malicious purpose.

10. Blended Threat: A coordinated combination of threats.

 GILL & RODRIGUES

8 Volume 2, Number 11, 2017

11. Denial-Of-Service Attack (DOS Attack): A systematic attempt to prevent a website or other
internet service from functioning through overwhelming it with garbage traffic. Often conducted
using botnets.

Each of these threats are more fully described in Exhibit 4.

Possible Relevance of Dynamic Logic
As he considered how the eleven threats related to dynamic logic, Perlovsky returned to the core strengths
of the approach, namely:

• The ability to use vague patterns as a starting point in order to identify crisp patterns/objects in
the presence of large amounts of noise.

• The ability to identify significant commonalities between objects that were described by a set of
attributes, so large that traditional techniques—such as cluster analysis—were computationally
impractical.

Of particular benefit was dynamic logic’s ability to accomplish these tasks in a very short amount of time,
using far fewer computational resources than other approaches. Also, unlike pattern matching techniques
such as neural networks, the approach was not heavily reliant on previous system training.

The dynamic logic algorithm also had some practical constraints. As currently operationalized, it worked
best when each observation was described by a consistent set of attributes. In the case of the earlier
examples, this consisted of a set of pixels describing a screen, and a pre-defined set of specific
characteristics that described a network packet. The algorithm would be much more difficult to
operationalize where observations came in an unstructured form, such as plain text or disk images. The
algorithm, particularly in its second form, would also not detect threats per se. Once it had identified self-
similar collections of observations, it would need an expert’s interpretation to ascertain whether a
particular collection represented a threat behavior or a normal behavior. The intervention of experts in
selecting attributes used to describe each observation might also be required to ensure that the collections
identified were of a type that could capture threats.

Incorporate Dynamic Logic into Cybersecurity Applications?
For several years, Perlovsky had allowed the potential cybersecurity applications of dynamic logic to
remain dormant as he pursued other projects. In early 2017, however, Bernardo Rodrigues, an energetic
master’s degree student from Brazil had become aware of the algorithm. Over a period of less than a
month, that student had identified a variety of ways in which DL might be incorporated into cybersecurity
tools. The proposals were far ranging. They included both proprietary and open source approaches
incorporated into both software components and hardware firmware. Some of the more interesting
approaches are now described.

Proprietary Software and Free/Libre Open Source Software
Bringing DL into real world Cyber Security applications followed two different paths: Proprietary
Software or Free/Libre Open Source Software (FLOSS). These paths are summarized in Exhibit 5.

Proprietary software was usually owned by the company or individual that developed it. It was generally
sold as a product or service, which meant that there would be some sort of customer support, but also that
there were restrictions on its use, and that its source code was kept secret. Additionally, proprietary

 MUMA CASE REVIEW

 9

software was often built in order to meet some specific market need, which meant there was monetary
value attached to the final product or service, as well as to the specialized labor force required to write it.

The FLOSS movement employed political and philosophical arguments to focus on the user's freedom
and the practical benefits technology could provide to society. Source code was open for anyone to read,
modify or improve. Although developers and engineers usually worked on FLOSS projects on a volunteer
basis, there was also room for business to be done under this philosophy. In particular, many for-profit
organizations have been established to provide service and support for open source libraries. For example,
Red Hat, Inc. generated billions of dollars of revenue each year by providing standard distributions and
support for the open source Linux operating system.

Although FLOSS applications all provided access to source code, they still were covered by license
agreements that users needed to follow. These licenses varied considerably with respect to their terms. At
one extreme, public domain open source software could be used without restriction or attribution. At the
other extreme, licenses referred to as “copy left” (as opposed to copyright) demanded that any application
employing the code must, itself, become governed by the same license—making it entirely inappropriate
for any application that also included proprietary code. In between these two extremes were a variety of
standard licenses that allowed the open source software to be mingled with other software to different
degrees and with different levels of attribution.

DL Software Libraries
The proposed first step in Rodrigues’ plan for bringing DL into real world applications would consist of
coming up with the design, architecture, and implementation of software libraries. This would enable
software developers and engineers to integrate DL into their solutions.

Proprietary: It was expected that new forms of malware would increasingly employ artificial intelligence
(AI) techniques to achieve their goals. On the other side of this battle, there was a race to come up with
new AI techniques that could prevent such attacks. DL software libraries could potentially help
companies build safer systems, and sell new kinds of cyber security products and services. To name a few
companies that might consider investing resources into proprietary DL libraries:

• Microsoft Corporation: For decades, Microsoft Windows has been one of the main targets for
cyber threats because of its ubiquitous presence as the main operating system used in corporate
environments. Native DL libraries could potentially help improve Windows’ security features
(https://www.microsoft.com/en-us/research/).

• Kaspersky Lab: Kaspersky Lab was a Russian multinational cybersecurity and antivirus provider
that developed and sold antivirus, internet security, password management, endpoint security, and
other cybersecurity products and services (http://www.kaspersky.com).

• Intel Security Group: Formerly known as McAfee Inc, Intel Security Group was the world's
largest dedicated security technology company (http://www.intelsecurity.com/).

FLOSS: FLOSS software was most commonly created and maintained as projects on source repositories
such as GitHub and SourceForge. These repositories allowed many users to collaborate on the same
project. They also served to manage stable and developmental releases and provided the capability of
managing separate development branches. One example in this context was Google’s TensorFlow, a

https://www.microsoft.com/en-us/research/
http://www.kaspersky.com/
http://www.intelsecurity.com/

 GILL & RODRIGUES

10 Volume 2, Number 11, 2017

Python library for machine learning. Since its transition to the Open Source world (Apache License 2.0)
in 2015, TensorFlow democratized education about machine learning and artificial intelligence (AI) all
around the world by enabling the use of deep learning neural networks by millions of students,
developers, and engineers.

With the goal of turning dynamic logic algorithms into FLOSS libraries and creating a community of DL
researchers, Rodrigues had already initiated the Aristotle Project. One of the project’s main goals was to
develop a set of modules in the Python programming language and libraries in the C/C++ programming
language. While Python was a powerful programming language with wide adoption in academic
environments, C/C++ was a very low level language that offered both exceptional speed and good
integration with hardware. The project complied to the GNU Lesser General Public License v3.0, which
meant proprietary projects could also make use of Aristotle's libraries without being forced to become
FLOSS. It was important to note that Aristotle’s libraries were meant to be agnostic as to which
application would be built on top of them, so they could be used in a wide variety of research areas, both
for commercial and non-profit purposes. The project was also intended to help educate AI researchers
about DL with wikis, videos, and a forum dedicated to discussing DL. One of the project’s mottos was:
“The best way to learn is by actively promoting knowledge within the community.”

As its ultimate goal, Rodrigues envisioned that the Aristotle Project would lead to the creation of a new
programming language that could enable ideas to be expressed in terms of DL. Such an achievement had
the potential to be an important breakthrough in AI. To name a few examples of research areas that could
benefit: music recognition and synthesis, speech recognition and synthesis, computer vision, autonomous
vehicles, cyber security, augmented reality, computational neuroscience, computational neurolinguistics,
psychology, and artificial intelligence. More information about Aristotle can be found at the website
(http://www.aristotleai.org).

If Aristotle were to flourish, the project needed mentoring, more human resources, and funding. This
could be accomplished through grants for graduate research or through private funding. To list a few
organizations that could be interested in helping Aristotle:

• OpenAI: A non-profit artificial intelligence research company, associated with business magnate
Elon Musk, that aimed to carefully promote and develop friendly AI in such a way as to benefit
humanity as a whole (https://openai.com/research/).

• Machine Intelligence Research Institute: A research institute with the mission of doing
foundational mathematical research to ensure smarter-than-human artificial intelligence had a
positive impact for mankind (https://intelligence.org/).

• Google: The ubiquitous search engine company awarded funding for computer science and
related fields, with a focus on subjects of interest to the tech giant like machine learning and
human-computer interaction. It supported both faculty and PhD students
(https://www.google.com/policyfellowship/).

R&D: DL + Cyber Threat Detection
Even though preliminary experiments showed promise in applying DL to cyber security, more extensive
research & development was still necessary. Carefully designing and performing exhaustive experiments
needed to be done in order to allow DL to reveal its true performance in realistic scenarios.

Proprietary: Besides the theoretical and technical aspects, research in the private sector had a bunch of
other questions to be answered. For example: What cyber security market niches could DL fill? What was

http://www.aristotleai.org/
https://openai.com/research/
https://intelligence.org/
https://www.google.com/policyfellowship/

 MUMA CASE REVIEW

 11

its real market value? What business models could be applied? What kinds of products and services could
be tailored? The same companies mentioned before (Microsoft, Kaspersky, Intel Security Group) were
listed as companies interested in doing such research.

FLOSS: One of the most commonly used FLOSS cybersecurity tools was Wireshark, a cross-platform
packet analyzer. It was used for network troubleshooting, analysis, software and communications protocol
development, and education. Wireshark was distributed under the GNU General Public License v2.0,
which meant that anyone could freely use it on any number of computers as they liked, without worrying
about license keys, fees or such. In addition, all source code was freely available under the GPL.

Amongst Wireshark's main applications:

• Network administrators used it to troubleshoot network problems. For example, finding the
source of Denial of Service (DoS) attacks.

• Network security engineers used it to examine security problems. For example, inside a network
a specific host has been sending suspicious unsolicited packets from an unusual port, possibly
infecting other machines.

• Developers used it for debugging in application development. For example, a developer could
employ Wireshark to debug some application that needs to establish a connection with a specific
server.

• Students used it to learn network protocol internals. For example, many undergraduate and
graduate level courses incorporated Wireshark as a teaching tool, providing the students rich
insights into how network protocols actually worked.

Networks exchanged information in fixed size chunks of bits known as packets. Wireshark worked by
capturing these packets (with help from the libpcap C library) from the machine’s network interface and
saving them into specific file formats, such as pcap (see Exhibit 6 for a Wireshark packet display).
Wireshark then dissected this packet information by trying to identify the packet type and acquiring as
much information as possible from it, a process referred to as packet dissection. It was in this stage that
Rodrigues felt that DL offered significant potential. He felt that DL might aid Wireshark in processing
such information, identifying new attributes, and coming up with higher level representations of the
traffic. Because DL’s algorithms needed low amounts of processing power, most of these analyses could
potentially be performed on-the-fly, without the need for offline processing on expensive hardware. A DL
based Wireshark dissector could serve as a tool for a whole new area of cybersecurity research, where
academics and companies were able to explore DL by performing a wide range of experiments with
malicious software in controlled network environments. Aristotle’s libraries would provide key elements
for the implementation of these DL based packet dissectors.

Real World Applications of DL
One possible application of DL in the real world was identified in networks. Computer networks could
roughly be divided into endpoint machines (called hosts) and various intermediary devices, here referred
to as network equipment (NE). Hubs, switches, modems, routers, bridges, and firewalls were a few
examples of kinds of NEs.

GILL & RODRIGUES

12 Volume 2, Number 11, 2017

In a computer network, the interactions occurred at many levels of abstraction, each employing its own
protocols. The vast majority of modern computer networks relied on the Open Systems Interconnection
(OSI) Model, which established various well-known protocols organized in 7 different layers of
abstraction (see Exhibit 8).

Dynamic Logic had already proven its potential for detecting anomalies in the Network Layer (IP) of
network traffic. This detection could potentially happen in many layers of the OSI Model, however,
producing very accurate and sophisticated models. DL could help NE firmware detect and mitigate
unusual traffic, perhaps even preventing it from causing any significant damage. DL had the potential to
make the backbones of the Internet safer by providing intelligent protection mechanisms to its main data
routes.

Proprietary: NE manufacturers could be interested in applying DL into their firmware because it would
stand as a differential feature in the market. A few examples of companies that could be interested in
integrating DL algorithms into their NE firmware’s security features:

• Cisco Systems, Inc.: An American multinational technology conglomerate that developed,
manufactured, and sold networking hardware, telecommunications equipment, and other high-
technology services and products (http://www.cisco.com/).

• Juniper Networks: An American multinational corporation that developed and marketed
networking products. Its products included routers, switches, network management software,
network security products, and software-defined networking technology
(http://www.juniper.net/us/en/).

• AT&T: An American multinational telecommunications conglomerate
(http://www.research.att.com/).

• Amazon Web Services: A subsidiary of Amazon.com that offered on-demand cloud computing
platforms (https://aws.amazon.com/).

FLOSS: Many NEs relied on some version of the Linux operating system. GNU/Linux was the result of
Richard Stallman’s GNU efforts to implement a truly Free/Libre and functional version of the Unix
operating system combined with Linus Torvalds’ kernel called Linux. Rodrigues believed that Aristotle’s
libraries could potentially help to bring new features, such as big data analytics and improved security,
into modern Linux based NE firmware. To name a few projects that could benefit from Aristotle:

• PNDA: An open source big data analytics project out of Cisco Systems. The platform took data
from various data center devices and applied big data analytics. Customers could mine the data
for troubleshooting, performance management, capacity planning, and security use cases
(http://pnda.io).

• DPDK: A Linux Foundation project that provided a set of libraries and drivers for fast packet
processing. It was designed to run on any processor. The first supported CPU was Intel x86 and it
was now extended to IBM POWER and ARM processors. It ran mostly in the Linux world
(http://dpdk.org).

http://www.cisco.com/
http://www.juniper.net/us/en/
http://www.research.att.com/
https://aws.amazon.com/
http://pnda.io/
http://dpdk.org/

MUMA CASE REVIEW

13

• Open vSwitch: A production quality, multilayer virtual switch licensed under the open source
Apache 2.0 license. It was designed to enable massive network automation through programmatic
extension, while still supporting standard management interfaces and protocols
(http://openvswitch.org).

Perlovsky’s Decision
As Perlovsky looked over Rodrigues’ various ideas, it began to dawn on him that he needed to make
some decisions about DL’s cybersecurity future. While he had been very impressed with Rodrigues’
energy and initiative, he recognized that the young man’s vision was unlikely to be realized without
considerable support—some of which would necessarily require Perlovsky’s attention.

Among the decisions that he needed to consider:

• Did he want to support the open source project or keep his options open for proprietary paths?

While he had no objections to open source projects in general, there were questions in his mind.
Specifically, he stated:

We must understand requirements for an open source project to succeed. Can it succeed as a stand-
alone software? Which specific applications should it address? What kind of interface will it require?

He also felt that he needed to know more about the question of how open source and proprietary solutions
might work together.

• How much encouragement should he be giving to Rodrigues?

Perlovsky appreciated Rodrigues’ enthusiasm and support for his work. Given that Rodrigues seemed to
be the main force pushing the project forward, he was reluctant to put any barriers in the young man’s
way. He stated:

I would be glad to give advice to Rodrigues, to answer questions he might have. My first advice
would be that he should decide how he should proceed and how much effort he is ready to invest.

Perlovsky also recognized that Rodrigues faced two potential sources of risk. First, was the risk that
incorporating dynamic logic into existing cybersecurity applications might be more technically
challenging than initially thought, and might prove beyond the capabilities of a single individual—even a
highly motivated one. Second, the project was in its preliminary stages and the effective “ownership” of
the project could shift. Working alone in Brazil, Rodrigues could potentially find himself at the periphery
of the project should active work in the U.S. or Europe begin. He wondered if Rodrigues was fully aware
of these risks.

• Should consideration be given to actively pursuing grants to further the software development?

Perlovsky was very supportive of the possibility of pursuing grants related to the use of dynamic logic in
cybersecurity. He asserted:

http://openvswitch.org/

GILL & RODRIGUES

14 Volume 2, Number 11, 2017

I would think that it is a good idea to pursue grants for software development. Dynamic Logic can
solve many problems unsolvable by other means and this gives a good initial step for a grant
application.

He also indicated that, given his interests, he was unlikely to initiate such grant proposals on his own. He
wondered how he might entice others to take the lead, while still getting the opportunity to participate as a
co-investigator.

• To what extent should he seek to find a U.S. researcher to whom the oversight of the project could
be delegated?

Perlovsky was very attracted to the idea of having other researchers move forward with the project. He
was not convinced of its feasibility, however, stating:

Actually, the question is: How to do it? From my experience, researchers capable of a project
oversight tend to concentrate on their own ideas. Only young researchers can notice and develop
existing ideas.

In addition to these specific questions, he faced a broader question: To what extent would it make sense to
redirect his attention to the potential cybersecurity applications of DL?

References
Perlovsky, L. (2016a, July). Gödel vs. Aristotle: Algorithmic complexity, models of the mind, and top

representations. In Neural Networks (IJCNN), 2016 International Joint Conference (pp. 1787-
1794). IEEE.

Perlovsky, L. I. (2016b). Physics of the mind. Frontiers in Systems Neuroscience, 10(84). 1-12.

Perlovsky, L. (2016c). The ANN and Learning Systems in Brains and Machines. In Angelov, P.P.,
Handbook on computational intelligence: Volume 1: Fuzzy logic, systems, artificial neural
networks, and learning systems (pp. 281-316). Singapore: World Scientific Publishing Co.

Perlovsky, L. I., & Ilin, R. (2010). Grounded symbols in the brain, computational foundations for
perceptual symbol system. Webmedcentral Psychology, 1(12), WMC001357.

Perlovsky, L., & Shevchenko, O. (2014, July). Cognitive neural network for cybersecurity. In Neural
Networks (IJCNN), 2014 International Joint Conference (pp. 4056-4061). IEEE.

Acknowledgements
This case study is based upon work supported by the National Science Foundation under Grant No.
1418711.

MUMA CASE REVIEW

15

Biographies
Grandon Gill is a Professor in the Information Systems and Decision Sciences
department at the University of South Florida. He holds a doctorate in Management
Information Systems from Harvard Business School, where he also received his
M.B.A. His principal research areas are the impacts of complexity on decision-
making, the diffusion of academic research findings and applying the case method
to STEM education. He is currently Editor-in-Chief of the Journal of IT Education:
Discussion Cases and of the Muma Business Review.

Bernardo Rodrigues is a Hardware Engineer at Data Traffic, a Brazilian company
that specializes in smart road traffic control. He received his Bachelor’s in
Electronics Engineering at University of São Paulo, and is currently working
towards his Master’s Degree in Computer Engineering, where he is researching
Machine Learning applications to Password Strength metrics.

 GILL & RODRIGUES

16 Volume 2, Number 11, 2017

Exhibit 1: Dynamic Logic Used to Identify Objects Obscured by Noise

Source: Perlovsky (2016b, p. 9).

MUMA CASE REVIEW

17

Exhibit 2: Using Dynamic Logic to Uncover Related Objects

Source: Perlovsky (2016a, p. 1790). Images inverted for visual clarity.

 GILL & RODRIGUES

18 Volume 2, Number 11, 2017

Exhibit 3: Malware Detection Using Dynamic Logic

Source: Perlovsky & Shevchenko (2014, p. 4059). Images inverted for visual clarity.

MUMA CASE REVIEW

19

Exhibit 4: Norton-Symantec Cybersecurity Threat Ratings
This list profiles the 11 most common security threats and classifies them by prevalence in descending
order.

Threat Description Prevalence

Virus
Piece of software able to infect a computer without the user permission
or knowledge, as well as to replicate itself. Usually spread over networks
or removable media by attaching itself to other files or programs.

Extremely High

Spam, Spim, Spit
Spam is junk email. Spim is similar to spam, but distributed through
instant messaging services. Spit is also similar to spam, but the media is
internet telephony.

Extremely High

Spoofing, Phishing
and Pharming

Spoofing is an attack where a person or program impersonates someone
else (usually with a spoofed URL). Phishing is a form of spoofing where
the attacker seeks to steal the victim’s credentials. Pharming is a form
of spoofing where the a group of users is targeted, usually through some
malicious modifications to popular DNS servers.

Extremely High

Spyware Software secretly installed without user’s consent with the intent of
monitoring their activity. High

Keylogging Piece of software that captures, records, and reports every key stroked
by the user without their consent or knowledge. High

Adware Software that shows advertising on the computer, usually without the
user’s consent or as a condition for installing some desired software. High

BotNet
A group of software robots that run automated tasks over networks.
Frequently used to launch Distributed Denial-of-Service (DDoS)
attacks.

High

Worm A self-replicating malicious piece of software that send copies of itself
over the network. Does not need to attach itself to other programs. Moderate

Trojan Horse A piece of software that appears to be legitimate but carries a malicious
payload. Moderate

Blended Threat A combination of multiple malicious components, such as a worm, a
virus, and a trojan horse. Moderate

Denial of Service
(DoS) Attack An attempt to make a computer resource unavailable by starvation. Low

Source: Adapted from: http://www.symantec-norton.com/11-most-common-computer-security-
threats_k13.aspx

http://www.symantec-norton.com/11-most-common-computer-security-threats_k13.aspx
http://www.symantec-norton.com/11-most-common-computer-security-threats_k13.aspx

 GILL & RODRIGUES

20 Volume 2, Number 11, 2017

Exhibit 5: Alternative Possible Paths to Incorporate DL

Source: Developed by case writer.

MUMA CASE REVIEW

21

Exhibit 6: Aristotle Project’s Website

Source: http://www.aristotleai.org/ (2017)

http://www.aristotleai.org/

GILL & RODRIGUES

22 Volume 2, Number 11, 2017

Exhibit 7: Wireshark Screenshot

Source: Wikimedia Commons (2017)

MUMA CASE REVIEW

23

Exhibit 8: OSI Model

Source: Wikimedia Commons (2017)

	Leonid Perlovsky
	Dynamic Logic
	Dynamic Logic Approach
	Dynamic Logic and Similar Object Identification
	Application of Dynamic Logic

	Dynamic Logic and Malware Detection
	Potential for Cybersecurity Applications
	Prominent Cyber Threats
	Possible Relevance of Dynamic Logic

	Incorporate Dynamic Logic into Cybersecurity Applications?
	Proprietary Software and Free/Libre Open Source Software
	DL Software Libraries
	R&D: DL + Cyber Threat Detection
	Real World Applications of DL

	Perlovsky’s Decision
	References
	Acknowledgements
	Biographies
	Exhibit 1: Dynamic Logic Used to Identify Objects Obscured by Noise
	Exhibit 2: Using Dynamic Logic to Uncover Related Objects
	Exhibit 3: Malware Detection Using Dynamic Logic
	Exhibit 4: Norton-Symantec Cybersecurity Threat Ratings
	Exhibit 5: Alternative Possible Paths to Incorporate DL
	Exhibit 6: Aristotle Project’s Website
	Exhibit 7: Wireshark Screenshot
	Exhibit 7: OSI Model

